Guide

QSense QCM-D experimental design and measurement conditions How to eliminate error sources and optimize reproducibility

QSense® QCM-D is a very sensitive technology, and small variations of the measurement conditions will make a big difference. Here we have compiled a checklist that will help you generate quality data by minimizing unknown variations and optimize the reproducibility of your measurements.

Contaminants

Avoid contaminants that may interfere with your measurement. Make sure you have:

- A clean instrument
- Clean tools (tweezers, beakers, etc)
- Clean sensors
- Clean samples and solvents. Avoid contamination, precipitation, inhomogeneity and unwanted growth (microorganisms)

Temperature

Ensure a stable temperature throughout the measurement

- □ Set the temperature, Tset, in the instrument and let equilibrate prior to the start of the measurement
- Avoid ambient T-variations, such as direct sunlight or air conditioning
- Equilibrate all liquid liquids included in the experiment to just above the set measurement temperature. If measurement is planned to be above room temperature special measures applies

Sample variations

Avoid sample variations. These can originate in many areas.

- **D** Be careful with variations in the sample preparation protocols
- Pay attention to potential batch variations (samples and solvents)
- **D** Pay attention to potential aging of e.g. prepared samples
- Avoid variations in sensor handling and preparation

Air bubbles

Bubbles are trouble.

- Degass solvents
- Let Tsample > Tinstrument

Bulk shifts

Characterization of the bulk shifts will facilitate the analysis and interpretation of the data

- Start and end with the same buffer
- □ As reference, check buffer step(s) prior to measurement

Measurement protocol

D Ensure reproducibility of exposure times and sample sequences

Harmonic(s)

- Capture the same harmonic(s) throughout the measurement series
- Capture as many harmonics as possible, including *f*1 and *D*1

Optimize the data capture for modelling

- Make sure to capture the baseline(s) on bare sensor surface(s)
- **D** Capture a stable baseline for at least 5 minutes
- □ Include as many harmonics as possible
- If possible, let the recorded signal level out e.g. if measuring let us say a protein surface adsorption, record signal until saturation (or near saturation)
- Annotate all surface events

